
12

The Abstraction: Address Spaces

In the early days, building computer systems was easy. Why, you
ask? Because users didn’t expect too much. It is those darned users
with their expectations of “ease of use”, “high performance”, “relia-
bility”, and so forth that really have led to all these headaches. Next
time you meet one of those computer users, thank them for all the
problems they have caused.

12.1 Early Systems

From the perspective of memory, early machines didn’t provide
much of an abstraction to users. Basically, the physical memory of
the machine looked something like what you see in Figure 12.1.

The OS was a set of routines (a library, really) that sat in memory
(starting at physical address 0 in this example), and there would be
one running program (a process) that currently sat in physical mem-
ory (starting at physical address 64k in this example) and used the
rest of memory. There were few illusions here, and the user didn’t
expect much from the OS. Life was sure easy for OS developers in
those days, wasn’t it?

12.2 Multiprogramming and Time Sharing

After a time, because machines were expensive, people began to
share machines more effectively. Thus the era of multiprogramming
was born [DV66], in which multiple processes were ready to run at

1



2 THE ABSTRACTION: ADDRESS SPACES

max

64KB

0KB

Current Program
(code, data, etc.)

Operating System
(code, data, etc.)

Figure 12.1: Operating Systems: The Early Days

a given time, and the OS would switch between them, for example
when one decided to perform an I/O. Doing so increased the effec-
tive utilization of the CPU. Such increases in efficiency were partic-
ularly important in those days where each machine cost hundreds of
thousands or even millions of dollars.

Soon enough, however, people began demanding more of ma-
chines, and the era of time sharing was born [S59, L60, M62, M83].
Specifically, many realized the limitations of batch computing, par-
ticularly on programmers themselves [CV65], who were tired of long
(and hence ineffective) program-debug cycles. The notion of interac-
tivity thus became important, as many users might be concurrently
using a machine, each waiting for (or hoping for) a timely response
from their currently-executing tasks.

One way to implement time sharing would be to run one process
for a short while, giving it full access to all memory (like the picture
above), then stop it, save all of its state to some kind of disk (includ-
ing all of physical memory), load some other process’s state, run it
for a while, and thus implement some kind of crude sharing of the
machine [M+63].

Unfortunately, this approach has a big problem: it is way too slow,
particularly as memory grew. While saving and restoring register-
level state (e.g., the PC, general-purpose registers, etc.) is relatively
fast, saving the entire contents of memory to disk is brutally non-

OPERATING

SYSTEMS ARPACI-DUSSEAU



THE ABSTRACTION: ADDRESS SPACES 3

512KB

448KB

384KB

320KB

256KB

192KB

128KB

64KB

0KB

(free)

(free)

(free)

(free)

Operating System
(code, data, etc.)

Process A
(code, data, etc.)

Process B
(code, data, etc.)

Process C
(code, data, etc.)

Figure 12.2: Three Processes: Sharing Memory

performant. Thus, what we’d rather do is leave processes in memory
while switching between them, allowing the OS to implement time
sharing efficiently (Figure 12.2).

In the diagram, there are three processes (A, B, and C) and each
of them have a small part of the 512-KB physical memory carved out
for them. Assuming a single CPU, the OS chooses to run one of the
processes (say A), while the others (B and C) sit in the ready queue
waiting to be run.

As time sharing became more popular, you can probably guess
that new demands were placed on the operating system. In partic-
ular, allowing multiple programs to reside concurrently in memory
makes protection an important issue; you don’t want a process to be
able to read, or worse, write some other processes’s memory.

12.3 The Address Space

However, we have to keep those pesky users in mind, and doing
so requires the OS to create an easy to use abstraction of physical
memory. We call this abstraction the address space, and it is the run-
ning program’s view of memory in the system. Understanding this
fundamental OS abstraction of memory is key to your understanding
of how memory is virtualized.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.6)



4 THE ABSTRACTION: ADDRESS SPACES

16KB

15KB

2KB

1KB

0KB

Stack

(free)

Heap

Program Code
the code segment:

where instructions live

the heap segment:
contains malloc’d data

dynamic data structures
(it grows downward)

(it grows upward)
the stack segment:

contains local variables
arguments to routines, 

return values, etc.

Figure 12.3: An Example Address Space

The address space of a process contains all of the memory state
of the running program. For example, the code of the program (the
instructions) have to live in memory somewhere, and thus they are
in the address space. The program, while it is running, uses a stack
to keep track of where it is in the function call chain as well as to
allocate local variables and pass parameters and return values to and
from routines. Finally, the heap is used for dynamically-allocated,
user-managed memory, such as that you might receive from a call to
malloc() in C or new in an object-oriented language such as C++
or Java. Of course, there are other things in there too (like statically-
initialized variables, and a few other details), but for now let us just
assume those three components: code, stack, and heap.

In the example in Figure 12.3, we have a tiny address space (only

16 KB)1. The program code lives at the top of the address space (start-
ing at 0 in this example, and is packed into the first 1K of the address
space). Code is static (and thus easy to deal with), so we can place it
at the top of the address space and know that it won’t need any more
space as the program runs.

Next, we have the two regions of the address space that may grow

1We will often use small examples like this because it is a pain to represent a 32-bit
address space and the numbers start to become hard to deal with.

OPERATING

SYSTEMS ARPACI-DUSSEAU



THE ABSTRACTION: ADDRESS SPACES 5

(and shrink) while the program runs. Those are the heap (at the top)
and the stack (at the bottom). We place them like this because each
wishes to be able to grow, and by putting them at opposite ends of
the address space, we can allow such growth: they just have to grow
in opposite directions. The heap thus starts just after the code (at
1KB) and grows downward (say when a user requests more mem-
ory via malloc()); the stack starts at 16KB and grows upward (say
when a user makes a procedure call). However, this placement of
stack and heap is just a convention; you could arrange the address
space in a different way if you’d like (as we’ll see later, when mul-
tiple threads co-exist in an address space, no nice way to divide the
address space like this works anymore, alas).

Of course, when we describe the address space, what we are de-
scribing is the abstraction that the OS is providing to the running
program. The program really isn’t in memory at physical addresses
0 through 16KB; rather it is loaded at some arbitrary physical ad-
dress(es). Examine processes A, B, and C in Figure 12.2; there you
can see how each process is loaded into memory at a different ad-
dress. And now, hopefully you can see the problem:

THE CRUX: HOW TO VIRTUALIZE MEMORY

How can the OS build this abstraction of a private, potentially
large address space for multiple running processes (all sharing mem-
ory) on top of a single, physical memory?

When the OS does this, we say the OS is virtualizing memory,
because the running program thinks it is loaded into memory at a
particular address (say 0) and has a potentially very large address
space (say 32-bits or 64-bits); the reality is quite different.

When, for example, process A in Figure 12.2 tries to perform a
load at address 0 (which we will call a virtual address), somehow
the OS, in tandem with some hardware support, will have to make
sure the load doesn’t actually go to physical address 0 but rather
to physical address 64KB (where A is loaded into memory). This is
the key to virtualization of memory, which underlies every modern
computer system in the world.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.6)



6 THE ABSTRACTION: ADDRESS SPACES

ASIDE: EVERY ADDRESS YOU SEE IS VIRTUAL

Ever write a C program that prints out a pointer? The value you
see (some large number, often printed in hexadecimal), is a virtual
address. Ever wonder where the code of your program is found?
You can print that out too, and yes, if you can print it, it also is a
virtual address. In fact, any address you can see as a programmer of
a user-level program is a virtual address. It’s only the OS, through
its tricky techniques of virtualizing memory, that knows where in the
physical memory of the machine these instructions and data values
lie. So never forget: if you print out an address in a program, it’s a
virtual one, an illusion of how things are laid out in memory; only
the OS (and the hardware) knows the real truth.

Here’s a little program that prints out the locations of the main()
routine (where code lives), the value of a heap-allocated value re-
turned from malloc(), and the location of an integer on the stack:

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[]) {

printf("location of code : %p\n", (void *) main);

printf("location of heap : %p\n", (void *) malloc(1));

int x = 3;

printf("location of stack : %p\n", (void *) &x);

return x;

}

When run on a 64-bit Mac OS X machine, we get the following
output:

location of code : 0x1095afe50

location of heap : 0x1096008c0

location of stack : 0x7fff691aea64

From this, you can see that code comes first in the address space,
then the heap, and the stack is all the way at the other end of this
large virtual space. All of these addresses are virtual, and will be
translated by the OS and hardware in order to fetch values from their
true physical locations.

OPERATING

SYSTEMS ARPACI-DUSSEAU



THE ABSTRACTION: ADDRESS SPACES 7

12.4 Goals

Thus we arrive at the job of the OS in this set of notes: to virtualize
memory. The OS will not only virtualize memory, though; it will do
so with style. To make sure the OS does so, we need some goals to
guide us. We have seen these goals before (think of the Introduction),
and we’ll see them again, but they are certainly worth repeating.

One of the major goals of any virtual memory (VM) system is
transparency. The OS should implement virtual memory in a way
that is transparent to the running program. Thus, the program shouldn’t
be aware of the fact that memory is virtualized; rather, the program
behaves as if it has its own private physical memory. Behind the
scenes, the OS (and hardware) does all the work to multiplex mem-
ory among many different jobs, and hence implements the illusion.

Another goal of VM is efficiency. The OS should strive to make
the virtualization as efficient as possible, both in terms of time (i.e.,
not making programs run much more slowly) and space (i.e., not
using too much memory for structures needed to support virtualiza-
tion). In implementing time-efficient virtualization, the OS will have
to rely on hardware support, including hardware features such as
TLBs (which we will learn about in due course).

Finally, a third VM goal is protection. The OS should make sure to
protect processes from one another as well as the OS itself from pro-
cesses. When one process performs a load, a store, or an instruction
fetch, it should not be able to access or affect in any way the memory
contents of any other process or the OS itself (that is, anything outside
its address space). Protection thus enables us to deliver the property
of isolation among processes; each process should be running in its
own isolated cocoon, safe from the ravages of other faulty or even
malicious processes.

In the next chapters, we’ll focus our exploration on the basic mech-
anisms needed to virtualize memory, including hardware and oper-
ating systems support. We’ll also investigate some of the more rel-
evant policies that you’ll encounter in operating systems, including
how to manage free space and which pages to kick out of memory
when you run low on space. In doing so, we’ll build up your under-

standing of how a modern VM system really works 2.

2Or, we’ll convince you to drop the class. On a more positive note, if you make it
through virtual memory, you’re probably going to make it all the way. So hold on!

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.6)



8 THE ABSTRACTION: ADDRESS SPACES

TIP: THE PRINCIPLE OF ISOLATION

Isolation is a key principle in building reliable systems. If two enti-
ties are properly isolated from one another, this implies that one can
fail without affecting the other. Operating systems strive to isolate
processes from each other and in this way prevent one from harm-
ing the other. By using memory isolation, the OS further ensures
that running programs cannot affect the operation of the underly-
ing OS. Some modern OS’s take isolation even further, by walling
off pieces of the OS from other pieces of the OS. Such microkernels
[BH70,R+89,S+03] thus may provide greater reliability than typical
monolithic kernel designs.

12.5 Summary

We have seen the introduction of a major OS subsystem: virtual
memory. The VM system is responsible for providing the illusion
of a large, sparse, private address space to programs, which hold all
of their instructions and data therein. The OS, with some serious
hardware help, will take each of these virtual memory references,
and turn them into physical addresses, which can be presented to
the physical memory in order to fetch the desired information. The
OS will do this for many processes at once, making sure to protect
programs from one another, as well as protect the OS. The entire ap-
proach requires a great deal of mechanism (lots of low-level machin-
ery) as well as some critical policies to work; we’ll start from the
bottom up, describing the critical mechanisms first. And thus we
proceed!

OPERATING

SYSTEMS ARPACI-DUSSEAU



THE ABSTRACTION: ADDRESS SPACES 9

References

[BH70] “The Nucleus of a Multiprogramming System”
Per Brinch-Hansen
Communications of the ACM, 13:4, April 1970
The first paper to suggest that the OS, or kernel, should be a minimal and flexible substrate for
building customized operating systems; this theme is revisited throughout OS research history.

[CV65] “Introduction and Overview of the Multics System”
F. J. Corbato and V. A. Vyssotsky
Fall Joint Computer Conference, 1965
A great early Multics paper. Here is the great quote about time sharing: “The impetus for time-
sharing first arose from professional programmers because of their constant frustration in de-
bugging programs at batch processing installations. Thus, the original goal was to time-share
computers to allow simultaneous access by several persons while giving to each of them the illu-
sion of having the whole machine at his disposal.”

[DV66] “Programming Semantics for Multiprogrammed Computations”
Jack B. Dennis and Earl C. Van Horn
Communications of the ACM, Volume 9, Number 3, March 1966
An early paper (but not the first) on multiprogramming.

[L60] “Man-Computer Symbiosis”
J. C. R. Licklider
IRE Transactions on Human Factors in Electronics, HFE-1:1, March 1960
A funky paper about how computers and people are going to enter into a symbiotic age; clearly
well ahead of its time but a fascinating read nonetheless.

[M62] “Time-Sharing Computer Systems”
J. McCarthy
Management and the Computer of the Future, MIT Press, Cambridge, Mass, 1962
Probably McCarthy’s earliest recorded paper on time sharing. However, in another paper [M83],
he claims to have been thinking of the idea since 1957. McCarthy left the systems area and went
on to become a giant in Artificial Intelligence at Stanford, including the creation of the LISP pro-
gramming language. See McCarthy’s home page for more info: http://www-formal.stanford.edu/jmc/

[M+63] “A Time-Sharing Debugging System for a Small Computer”
J. McCarthy, S. Boilen, E. Fredkin, J. C. R. Licklider
AFIPS ’63 (Spring), May, 1963, New York, USA
A great early example of a system that swapped program memory to the “drum” when the pro-
gram wasn’t running, and then back into “core” memory when it was about to be run.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.6)



10 THE ABSTRACTION: ADDRESS SPACES

[M83] “Reminiscences on the History of Time Sharing”
John McCarthy
Winter or Spring of 1983
Available: http://www-formal.stanford.edu/jmc/history/timesharing/timesharing.html
A terrific historical note on where the idea of time-sharing might have come from, including some
doubts towards those who cite Strachey’s work [S59] as the pioneering work in this area.

[R+89] “Mach: A System Software kernel”
Richard Rashid, Daniel Julin, Douglas Orr, Richard Sanzi, Robert Baron, Alessandro
Forin, David Golub, Michael Jones
COMPCON 89, February 1989
Although not the first project on microkernels per se, the Mach project at CMU was well-known
and influential; it still lives today deep in the bowels of Mac OS X.

[S59] “Time Sharing in Large Fast Computers”
C. Strachey
Proceedings of the International Conference on Information Processing, UNESCO, June
1959
One of the earliest references on time sharing.

[S+03] “Improving the Reliability of Commodity Operating Systems”
Michael M. Swift, Brian N. Bershad, Henry M. Levy
SOSP 2003
The first paper to show how microkernel-like thinking can improve operating system reliability.

OPERATING

SYSTEMS ARPACI-DUSSEAU


